1 Dr. Miles Dyck, PhD, PAg Graduate Soil Physics Syllabus

Lecture	Lecture Content
Number	
(~2 hrs)	
1	I. The soil as a multiphase, multi-scale system
	a. Liquid-solid and liquid-air interfaces
	i. Surface tension
	ii. Soil water potential
	1. Matric potential
	2. Osmotic potential
	3. Gravitational potential
	4. Total potential / Hydraulic Head
	5. Basic flux laws
-	iii. Soil freezing
2	a. Equilibrium conditions, mass-volume-potential relationships
	i. The moisture retention curve
3	ii. The soil freezing curve b. Bulk soil physical properties
3	
	i. Representative elementary volume
	ii. Cumulative distribution functions
	iii. Introduction to spatial variability and spatial averages
4	I. Mass fluxes in soils
	a. Soil water flux
	i. Saturated flow and Darcy's Law
	1. Saturated hydraulic conductivity
	ii. Unsaturated flow and the Darcy-Buckingham Flux Law (is it a law?)
-	1. Unsaturated hydraulic conductivity
5	iii. The continuity equation and conservation of mass
	 Derivation of the Richards equation iv. Steady and transient state soil water flux
6	v. Soil water flux in the field
0	1. Infiltration
	a. Modeling infiltration with the Richards equation
	i. Boundary conditions and initial conditions
	1. Flux boundary conditions –
	precipitation limiting infiltration
	(unsaturated)
7	2. Ponded infiltration – potential
	(hydraulic head) boundary
	conditions – soil limiting infiltration
	a. The Philip equation and
	Sorptivity
	b. Multi-dimensional
	infiltration, matric flux
	potential and the "sorptive
	number" – α^*

2 Dr. Miles Dyck, PhD, PAg Graduate Soil Physics Syllabus

-	
7	2. Redistribution and Field Capacity
	a. Plant available water capacity (PAWC)
	3. Evapotranspiration and the soil-plant-atmosphere
	continuum (SPAC)
	a. Permanent wilting point
8	b. Solute Flux
	i. Convection
	ii. Diffusion
	iii. Dispersion
	iv. Steady and transient state solute flux
9	v. The continuity equation and conservation of mass
	1. The convection-dispersion equation (CDE)
	2. Solution of the steady state CDE
	a. Boundary and initial conditions
	i. Flux and resident solution concentration
	b. Spike or pulse solute input boundary
	conditions
	c. Step input boundary conditions
10	vi. Attenuation processes
	1. Adsorption
	2. Production/decay
11	vii. Stochastic convective solute transport models (steady state)
	1. The solute travel time distribution
	a. Relation to solute input boundary conditions
	b. Convolution
12	viii. Solute fluxes in the field
	1. Coupled water and solute fluxes
	2. Salinization of the root zone and the leaching fraction
10	3. Estimation of contaminant travel times
13	III. Electrical properties of soils and TDR
	a. Electrical Conductivity
	b. Dielectric Permittivity
14	c. Multiphase Dielectric Mixing Models
	i. Applications to calibration of TDR for soil water content
	measurement in unfrozen and partially frozen soils
	ii. Application for estimation of unfrozen water content in partially
	frozen soils and uncertainty of estimates
	d. Applications of TDR for measurement of soil water and solute fluxes